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A new method for the calculation of heat exchange in systems with a complex spec- 
trum containing spectral lines is worked out. 

i. When calculating heat exchange by radiation in problems of thermal physics and gas- 
dynamics, it is necessary to find values, integral with respect to the entire spectrum, of 
the flux or those of its divergences at any point of the volume of gas under consideration. 
As a rule, the problem is solved by successive approximations, when the profile of tempera- 
ture and other parameters are assumed as given for finding the radiation field. After calcu- 
lation of the radiation field the values of the radiation flux or those of its divergences 
are substituted into hydrodynamic equations, which allows the distribution of the parameters 
to be refined. Usually the iteration process converges fairly rapidly. 

Fundamental difficulties arise in the calculation of the radiation characteristics. The 
radiation-transfer equations are formulated for spectral intensity, in connection with which 
their solutionmust be integrated over angles and frequency. 

The radiation flux or its divergence entering into the equation of conservation of ener- 
gy are quantities integral with respect to space, i.e., their values at a given point, gen- 
erally speaking, depend on the distribution of the parameters in the entire volume of gas. 
Such a nonlocal character of the radiation field does not allow us, in the general case, to 
carry out exact integration of the spectral characteristics over frequencies and angles. In 
addition, direct integration over frequency of the radiation characteristics in the process 
of solution of the gasdyn~m~c problem requires unrealistically much machine time. It is con- 
nected with the fact that hot gases usually have a complex spectrum of absorption and radia- 
tion, which are determinable by a large number of elementary photoprocesses. Particular dif- 
ficulties are created by spectral lines in which the absorption coefficient often changes 
by several orders in a narrow frequency interval. These circumstances led to the development 
of approximate methods of solution of this problem. 

In the present paper we briefly consider the methods of integration of the transfer 
equation over frequency, found in the literature, and propose a new method which solves the 
problem of calculation of selective radiation transfer in a number of cases. 

All methods of integration of the transfer equation over frequency can be divided into 
five groups: 

I. Limit approximations (homogeneous models, Planck's approximation, Rosseland approx- 
imation, partition of the spectrum according to optical density). 

II. Local averaging (approximation of a "gray" gas, stepped models, group averaging). 

III. The Milne--Eddington model. 

IV. Nonlocal averaging (empirical models, homogeneous averaging, method of functionals). 

V. Integral methods (method of equivalent width, band models, method of effective sec- 
tions, integration along the outline, asymptotic method of partial characteristics). The 
first group contains methods not requiring the solution of the transfer equation over the 
entire volume of gas. Such a simplification is possible only in certain limiting cases. 
Thus, if the volume under consideration has virtually homogeneous distribution of temperature 
and pressure and possesses, in addition, a fairly high degree of symmetry, it can be com- 
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pletely replaced by a homogeneous model volume, and it is possible to carry out beforehand. 
the calculations of the heat-exchange characteristics. The most widely used models are homo- 
geneous hemispheres and plane layers. Such calculations can basically serve for estimates. 

In the limiting cases of small and large optical density, the Planck and Rosseland ap- 
proximations are respectively used. The Planck approximation is usually valid only when the 
role of radiation is not large. Furthermore, it virtually may never describe radiation 
transfer in resonance lines and in an ionization continuum. For validity of the Rosseland 
approximation large optical densities, in the entire spectral region that is important in the 
energy relationship, are needed so that they usually are not encountered under terrestrial 
conditions. At the same time, the radiation is effectively reabsorbed and its role in the 
energy balance falls. Noncritical use of the Planck and Rosseland approximations, under con- 
ditions that do not satisfy those required for these approximations, can lead to an error in 
the order of magnitude and give qualitatively untrue results. In certain cases the spectrum 
of the absorption coefficient can be divided into portions with small and large optical dens- 
ity, while the role of portions with intermediate optical density is not large. Here, in 
individual regions of the spectrum, we can apply the Planck and Rosseland approximations. 

The following three groups of methods presuppose a certain primary processing of the ab- 
sorption coefficient in the real spectrum, in order to make the calculation of the radiation 
field feasible for computers. 

In methods of local averaging, ~e absorption coefficient is averaged in fixed frequency 
intervals. The limiting case of such processing is approximation of a "gray" gas. As is 
shown in numerous papers, such an approximation does not usually reflect the qualitative 
side of the phenomenon and can give a considerable error. Various stepped models are basic- 
ally applied for the description of radiation transfer in a continuous spectrum. An attempt 
to include spectral lines, having marked each line with a step, as was done by Olstad [i], 
was not crowned with success. Biberman [2] more than once pointed out that it is impossible, 
in principle, to replace a spectral line by a single equivalent step. 

By the group averaging method [3] it is possible to describe the radiation transfer in 
spectral lines. In it a very detailed partition of the spectrum is carried out, so that each 
spectral line is replaced by a multistep model and the transfer in it is given by several av- 
erage absorption coefficients. All spectral intervals with the same average absorption coef- 
ficient are joined in a single group, which is then characterized by a single transfer equa- 
tion. The group averaging method leads to a small number of groups with a good description 
of the entire real spectrum; however, its use is confined to systems with comparatively small 
temperature variations, as, e.g., in compressed layers behind the front of shock waves [4]. 
With a large deviation of temperature from the temperature at which the partition of the 
spectrum was carried out, growth of the error is possible. 

The use of the Milne--Eddington model, i.e., the assumption that the absorption coeffi- 
cient can be represented in the form of the product of two functions, one of which depends 
on frequency, and the other on temperature and pressure, allowed a number of effective meth- 
ods of averaging the transfer equation to be developed. To this group belong first and fore- 
most the investigations by Gol'dln and Chetverushkin [5], Shmyglevskii [6], and Krivtsov [7]. 
Regrettably, this model can seldom be applied to real spectra. 

A series of attempts was made to broaden the frequency intervals in which averaging was 
carried out, by means of the use of the nonlocal character of the average absorption coeffi- 
cient. This nonlocality manifests itself, e.g., in the fact that quanta emitted in a spec- 
tral line are absorbed nonuniformly along the ray. The quanta corresponding to the center of 
the line are absorbed more intensely, so that the principal contribution to the radiation in- 
tensity in the line is shifted as we move along the ray into the region of the wings. 

Sampson [8] proposed an empirical combination of the coefficients of Planck, Rosseland, 
and optical density, which ensures an exit to the Planck and Rosseland coefficients in the 
case of an optically transparent and an optically dense medium. However, even for the simple 
spectrum of braking processes, the best combination found in [8] gave an error of nearly 100%. 
Another type of nonlocal averaging that does not use empirical combinations is proposed in 
[9]. The expression for the average nonlocal coefficient here is found from the condition 
that an exact solution is obtained for homogeneous volumes of gas. A check for a spectrum 
that was analogous to that used in [8] gave an error of about 5%; however, for a real spec- 
trum with lines the error grew and reached 30% in certain cases. 
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An interesting variant of nonlocal averaging was proposed by Nemchinov [I0]. The ab- 
sorptlon coefficient in this method is averaged by means of the true intensity field, i.e.~ 
constitutes a functional of the radiation field. To compute such functionals we have first 
to solve the spectral transfer equation for all frequencies, after which it is possible to 
rapidly carry out a series of iterations using average coefficients. The method of function- 
als allows us to substantially reduce the machine time necessary for direct integration. 

The methods enumerated can be successfully used for the calculation of the radiation 
transfer in simple spectra. For spectra containing a large number of spectral lines, inte- 
gral methods turned out to be effective. In these earlier methods, before the solution of 
the problem, we calculate certain characteristics which are integral over parts of the spec- 
trum or over the whole spectrum, and which then in the process of solution of the problem 
allow us to rapidly obtain the fields of intensities, fluxes, or their divergences. Integral 
methods have been used already for a long time in models of absorption bands -- initially for 
isothermal layers and then, hy means of the semiempirical approximation of Curtis-q3odson, also 
for nonisothermal systems. In recent times, integralmethods became to be used for real spec- 
tra. Simmons [ii] proposed to use for nonisothermal layers an integral expression for the 
radiation intensity in a line with a dispersed outline. This expression, obtained by Laden- 
burg and Reiche for homogeneous layers, Simmons used in inhomogeneous gases by averaging the 
half-width of the llne according to the Curtis--Godson method. Analogous computations for a 
line with a Doppler contour were carried out by Yamada [12]. These approximations were not 
widely used because of their unestablished accuracy. 

An effective method to obtain integral expressions for the dispersion contour was worked 
out by Bronin and Lagar'kov [13]. It turned out that, having put the half-width in the de- 
nominator of the expression for the dispersion contour on the entire absorption path equal 
to the half-width at the source temperature, we can obtain very accurate results. This meth- 
od of integration of the equation of radiation transfer is at the present time one of the 
best methods, but it is very complicated and accessible only to highly qualified specialists 
in the field of atomic physics. We should also mention the method of "effective sections" 
proposed by Ovsyannikov [14]. Here in the expressions for radiation flux and its divergences 
certain functionals are isolated which depend on the distribution of the parameters in the 
volume. In the general case these functionals cannot be tabulated beforehand. Only the case 
where the coefficient of absorption has the Milne--Eddington form is amenable to computations. 

2. The approach of the present investigation consists of the fact that earlier, before 
the solution of the problem, for the entire real spectrum we carry out exact integration over 
the frequency, of the absorption capacity on the ray with a certain model distribution of 
the parameters [9, 15]. 

The radiation flux and its divergence in the general case can be calculated in terms of 
the intensity field: 

s = ~ 1~d~, (1) 
(4.~) 

vS = ~ vld~. (2) 
(4~) 

Here the intensity I and the quantity VI, which may be called the directed divergence, are 
determined by integration over the frequency, of the transfer equation for the spectral in- 
tensity 

~v4 = kS (I ~ -- 4 ) .  (3) 

For the ray shown in Fig. i, the quantities I and VI at the point X are 

~L X 

O0 E 
= ~ L X 

vI(X)~-2!I~ dv -.i k~.(X)~ Iv~ (~),~ (~)exp ( - - [ . I  kS (tl)d~q [) ~dv" 
b o o ~, 

(4) 

(5) 
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For bounded and piecewise-continuous integrand functions we can alter the order of in- 
tegration in expressions (4) and (5) and represent them in the form 

L 

I (x)  .... !' A I  (~, x) sign (x  - -  ~) ~',  
6 

(6) 

L 
vZ (x) =2so (x) - -  i' Asi (~, x)  ~ ,  (7) 

where 

X 

0 

(8) 

i0 So(X)= lv(X)kv(X)dv; (9) 
0 

X 
x)=  (10) 

o 

The q u a n t i t i e s  AI ,  So and bSi can be c a l l e d  the p a r t i a l  i n t e n s i t y ,  the source,  and the 
p a r t i a l  s i n k ,  r e s p e c t l v e l y .  The n o t a t i o n  So and Si i s  formed from the w o r d s " s o u r c e " a n d " s i n k . "  

F igure  2 c l a r i f i e s  the meaning o f  the term " p a r t i a l . "  The i n t e n s i t y  at the p o i n t  X i s  
made up of the partial intensities emitted at various points of the ray ~ and reaching as 
far as the point X with the absorption on the path ~ ~ X taken into account. If for the gi- 
ven partial intensity, having kept the temperature of the source and the length of the ab- 
sorption path, we replace the actual temperature distribution by a certain model distribu- 
tion, then we can first calculate the quantities (8)-(10) and then use them in the solution 
of heat exchange problems. In the role of the model distributions of temperature and pres- 
sure, it is convenient to use simple splines, i.e., piecewise-smooth functions. At the same 
time, quantities (8) and (i0) will be functionals constructed with the use of these splines. 
In the process of solving the heat-exchange problem the actual profiles of temperature and 
pressure are approximated according to some rule by model splines, and from the block of 
partial characteristics we choose the quantities Al or ASi corresponding to t~hese splines. 

By increasing the order of the spline, we can attain an arbitrarily good approximation 
of the working profiles. In this sense the method is asymptotic and can give an arbitrarily 
high order of accuracy. 

3. The efficiency of the asymptotic method is determined by the circumstance of how 
well it works already in the case of low orders of approximation, since for splines of high 
orders, although a high accuracy of the calculations is ensured, the number of approxima- 
tion parameters can become unrealistically large. The effectiveness of the method being pro- 
posed is ensured by the fact that the absorption capacity of the ray does not depend on the 
actual distribution of the coefficient of absorption, but is determined only by the integral 
along the ray fk' (q)dN. Calculations show that we can choose the approximating splines so 

that already for low orders of approximation (linear splines) a good accuracy of the calcula- 
tions is assured. 

In Fig. 3 we have shown the simplest two-temperature splines and three-temperature bi- 
linear and quadratic splines (the dashed line) and methods of approximation by them of the 
working profiles of the temperature. In Fig. 3a, c and e the base temperatures T' and T' 

x 
have been chosen according to a rule which will be discussed below, 

Independently of the order of splines, the method gives accurate results in the limiting 
cases of low and high optical densities. For low optical density the exponents in expressions 
(8) and (i0) become unity, the integral term in (7) ceases to play an important part, and cal- 
culations according to expressions (6) and (7) give accurate results for an optically trans- 
parent gas. For high optical density the part of the ray playing a part in the formation of 
the intensity at the point X (see Fig. l) becomes small, so that the distribution of tempera- 
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Fig. i. Ray of integration with an 
arbitrary distribution of temperature 
T and pressure P. 

x -L X 

Fig. 2. Explanation of the meaning of partial characteris- 
tics. Radiating elements are hatched. The dashed line de- 
notes approximation of the temperature distribution on the 
absorption path by linear splines. 
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Fig. 3. Approximation of the 
working profiles of the tempera- 
ture by linear (a, b), bilinear 
(c, d), and quadratic (e, f) 
splines: 1-4) see Fig. 7. 

ture and pressure on this part approaches a linear distribution, Approximation of such parts 
by any splines is accurate, and this in fact ensures that an accurate solution is obtained. 
Thus, only the case of an intermediate optical density need be subjected to a check. 

4. A model spectrum, constituting a schematized spectrum of atomic hydrogen, was used 
for a check. The braking processes of electrons in proton fields, photoionization from the 
basic state and with the excited levels and series of Lyman and Balmer were taken into ac- 
count. The absorption coefficient of the model spectrum for a number of temperatures and 
pressures is presented in [9, 15]. 

In the role of the partial characteristic for the calculation of the intensity field, 
expression (8) is used, in which the integral under the exponent sign is a functional of 
splines modeling the temperature and pressure distribution. Thus, for linear splines Al = 
AI(T$, P~, TX, PX, x), where x = I~ -- XI. The final expression for the calculation of &l has 
the form 
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x 

AI =J" IO(T~)k v (Tr Pt)exp (--.[ kv(n)d n) dr. 
0 0 

(n) 

For the calculation of Vl expressions (9) and (i0) are often inconvenient. The presence 
of portions with a large absorption coefficient (spectral lines, photolonization from the ba- 
sic state) in the spectrum leads to the quantity Vl in (7) being orders less than the quanti- 
ties on the right-hand side, as a result of which computation with a very fine step with re- 
spect to ~ is required. Expressions free from this shortcoming are obtained from (9) and 
(i0) by means of the identity transformation: 

i x Sore = l~ (rx) k v (Tx, Px)exp (-- [ k v 01) d'q ) dr, 
0 0 

(12) 

x 

ASim =~[I~176 )] k;(T~, P~)kv(T x , Px) exp ( - - j 'k ;  (y)d,q)dv. 
b o 

(13) 

In expressions (12) and (13), which have been modernized, the notation w and Si are 
provided with the additional letter m. The functionals Som and ASim depend on the same var- 
iables as Al. In addition, we see that the ne~ source Al coincides (with accuracy up to the 
indices) with the quantity AI; therefore, it is preliminarily necessary to calculate only 
two functionals: AI and 8Sim. 

The computation of Vl by means of expressions (12) and (13) is carried out according 
to the expression 

X L L 

V I (X)= Sore I + Sorn ~--oy ASirn~. 
0 

(14) 

The approximation of the working profiles by splines with the use, in the role of the 
base points, of the temperatures and pressures of these profiles (Fig. 3a, c, and e) is the 
simplest, but it does not realize all the possibilities of splines of the given order. The 
accuracy can be substantially increased if we choose the temperatures and pressures T x' and 

' P' according to Fig. PX' in the approximation according to the method shown in Fig. 3b or T , n 

3d, f from the condition of conservation of the integrals of temperature and pressure. Here 
the calculation expressions, e.g., for the temperatures T X' and T' in the case of linear and 
bilinear splines have the form n 

X 

T x = 2 f IX--glT(n) dn T,,. (15) 
X 

T~---- 2 S rO1) dn r t -  rx  
I x -- ~ I 2 (16) 

The approximation of the working profiles by linear splines according to this method is 
shown in Fig. 2 by the dashed line. 

The approximation method just presented is based on the circumstance that in the case 
of linear dependence of the absorption coefficient on temperature and pressure the optical density 
does not depend on the concrete distribution of the parameters, but is determined only by their 

X X 
integral. Thus, if ~(T) = A + BT, then /k' dn = Ax + BITdB. Linearity of the absorption 

o %) o 

coefficient is always observed for small I~ -- XI. (In the general case, the rule just pre- 
sented will be approximate and needs checking.) In Fig. 4 we have shown the behavior of the 
absorption coefficient k ' on the ray dependent on the temperature, for three temperature 
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Fig. 4. Variation of the absorption coefficient along the ray 
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files; 5) region of continuous spectrum, v = 5.10 ~ cm-*; c) 
center of line L=. 

Y5 

/Oir a 1 
0 f 

/5 

/0 

0 ! 

Y5 

/0 

C 

I 

/ 

r 

b- d 

Z 
qt ,zo Io ~oe x 

I '1 
r 

6 11 1 
! IZ~' ~ z I 

2 

b I e 
I 

0 
o . V  L o,i o Io too p 

E f f e c t i v e  o p t i c a l  d e n s i t y  f o r  d i f f e r e n t  t empera tu re  Fig. 5. 
profiles, T, 10S'~ x, cm;P, bar. Solid curves) in d and e 
correspond to the solid curves in a, b, and c which retain the 
integral [TdN; d) P = i0 bar; e) L = I0 era. 

144 



r~ "rx 

I0 
i 

a 

I 
I 
rl x 

2O r~ r n r~ 

I b I 0 
o I I 

~, 'l x 6 

ZO~ ~--~ 

Ol I c 

qo~ 

�9 \ 

~A, \ 
k#, 
~ \a 

N, 
k~xX\ ,,,x\ 

"%\ 
N" 

\ \ \  

qt z x 
Fig. 6. Partial intensities for billnear 
temperature spllnes, x, cm; AI, arbitrary 
uni~. 

I 

! 

0 

-! 

-2 

! 

- ~  

= 0 f b 

I f\T 
-/0 

! 

o ~/LIj 

o .~/~ 

Fig. 7. Verification of the method of partial characteristics 
for a series of temperature profiles. T, 103,~ I;relative 
units: a, c) P = i0 bar; i) L = i00 cm; 2) i0; 3) i; 4) 0.I; 
b) L = i0 cm; i) P = I00 bar; 2) i0; 3) i; 4) 0.i, 

145 



profiles with the same integral fTdn(l, 2, 3). Case b corresponds to the portion of contin- 
uous spectrum and c to the resonance line L=. We see that the integral /k' dn is approximate- 
ly conserved, v 

5. The verification of the method was carried out for numerous temperature and pressure 
profiles, including typical profiles encountered in experimental and technological systems. 
The temperature, pressure, and dimensions of the radiating volumes were widely varied, 

In Fig. 5, we have shown for a number of temperature distributions the behavior of the 
quantity 

w* = In (AI (T~, T x , 0)/AI ( T  b T x  , x)), (17) 

having the meaning of an effective optical density. By solid lines we have shown the temper- 
ature splines which conserve the integral fTd~, and the values of T* corresponding to these 
splines. We see that the rule is well observed. It should be noted that analogous calcula- 
tions carried out for portions of a model spectrum showed a stronger dependence of z* on the 
temperature distribution, a circumstance which speaks for a certain compensation of errors 
when calculating for the entire spectrum. The dashed curves are the remaining temperature 
profiles (i.e., not preserving /Tdq) and the values of T* and Al corresponding to these pro- 
files. 

In Fig. 6 we have shown the values of partial intensity for billnear splines. The mean- 
ing of the solid lines and dashes is the same as in Fig. 5. We note that the weak dependence 
of &l on the temperature distribution under the condition of conservation of the integral 
fTdn, which is observable from Fig. 6, already by itself guarantees high accuracy of the meth- 
od being proposed. Nevertheless, the method was subjected to a comprehensive and careful 
check. In Figs. 7-9 we have shown certain results. The solid lines are the results of direct 
integration over frequency by means of expressions (4) and (5). Here ~5) or the expressions 
(7), (9), and (i0) equivalent to it were transformed in the same way as (12) and (13). 

The results of the calculations by means of the method of partial characteristics are 
shown in Figs. 7-9 by means of marks 1-4 corresponding to the method of approximation of the 
working profiles by splines (see Fig. 3a-d). In Fig. 9 the marks at the curves correspond to 
the approximation method of the expression for a sink (13). Source (12) was always approx- 
imated according to the method of Fig. 3b. Analogous results were obtained for other temp- 
erature and pressure profiles. It should be noted that the values of VI necessary for the 
calculation of VS are calculated somewhat worse than I. This result, being a natural con- 
sequence of the circumstance that Vl in fact is a derivative of I, does not diminish 
the accuracy of the final solution of the heat-exchange problem. The integral re- 
sults of the solution will have an accuracy which is analogous to the accuracy of calcula- 
tion of the radiation flux S, and not that of its divergence VS which enters into the differ- 
ential equation of energy conservation. 

6. The method just presented does not require introduction of any assumptions about the 
form of the spectrum. Any number of spectral lines with an arbitrarily complex contour, with 
multistrandedness and shift taken into account, can be included in the calculation. The re- 
suits of the calculations do not depend on the form of the spectrum and, for a spectrum of 
any complexity, constitute smooth relationships which are easily entered into the computer 
memory. 

An important advantage of the asymptotic integral method is the fact that it allows us 
to carry out in many cases the computation on a gasdynamic grid the step of which depends 
only on the temperature and pressure gradients. The traditional methods, as a rule, require 
for the calculation of the radiation transfer introduction of special grids, where the step 
depends on optical density. 

The method worked out here is accessible to wide circles of thermal physicists and 
gasdynamiclsts who have no special preparation in the field of atomic spectroscopy. The cal- 
culatlon of the radiation flux or its divergence reduces here to approxmation of the working 
profiles of temperature and pressure by model splines, selection from the block of the char- 
acteristics those corresponding to these splines, and su-~ation of them. Here the computa- 
tion time becomes small in comparison with the time of solution of the gasdynamic problem. 
The calculation of the radiation transfer by the traditional methods usually results in an 
inverse relation of the times. 
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NOTATION 

X, x, $, n, coordinates; ~, frequency; P, pressure; T, temperature; k'v, absorption 
coefficient with forced emission taken into account; I~, spectral intensity; I~, spectral 
equilibrium intensity; I, frequency integral intensity; T, optical density; Q, unit vector; 
S, radiation flux; A, B, constants. 
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MODELING RADIANT-HEAT-TRANSFER PROBLEMS IN MEDIA OF 

NONPLANE GEOMETRY 

K. S. Adzerlkho, V. I. Antsulevich, 
V. P. Nekrasov, and V. P. Trofimov 

UDC 536.3:536.52 

Approximate and numerical methods of solution of radlatlon-transfer equations in 
cylindrical and spherical media are proposed, the spectroscopic lumlnescence char- 
acteristics of infinite and finite cylinders are analyzed, and am algorithm for 
their calculation is given. 

In many problems of radiant heat transfer, it is necessary to take account of multiple- 
scattering processes, since the heat carrier in various power stations is a two-phase gas-- 
solld-partlcle system. The investigation of multiple-scatterlng laws is also of great impor- 
tance for other fields of physics and for physlcal-englneerlng applications (atmospheric op- 
tics, the energetlcs of planetary atmospheres, the problem of spacecraft entry into the at- 
mospheric layer, the interaction of laser radiation with matter, etc.). The intensification 
of modern power stations, associated with the considerable increase in heat-carrler tempera- 
ture, requires as accurate as possible a determination of their thermodynamic characteristics. 
At the same time, the radiant component in the total energy balance becomes significant, and 
therefore the correct solution of radiant-heat-transfer problems is a pressing concern. On 
the one hand, it is necessary to establish the basis of radiation-transfer equations for real 
physical models and the limits of applicability of this solution; on the other, it is neces- 
sary to use reliable spectroscopic characteristics of the media investigated. 

The problem of radiation propagation in two-phase media of nonplane geometry is one of 
the most important in modern radiatlon-transfer theory. Because of the great mathematical 
difficulties involved, approximate [1-3] or numerical [4, 5] methods are usually used for 
the solution of integrodifferential radiatlon-transfer equations. Note that the development 
of approximate methods of solution is expedient both for rapid estimates of the energy char- 
acteristics of two-phase nonplane media and for the determination of the best initial approx- 
imation in n,,merical calculations of radiation-transfer equations by iterational methods. 
The wide use of computers allows numerical experiments to be carried out for diverse physical 
phenomena, which, in economic terms, is considerably preferable to full-scale experiments 
and physical modeling. By constructing mathematical models, it is possible to study the im- 
portant physical laws governing phenomena or to investigate directly conditions of power- 
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